1. Sassy Jeans are $90 a pair. If they are 40% off today, how much will they cost? GSE.7.RP.3

2. The old pool held 70 gallons of water. The new pool holds 20% more than the old one. How much water does the new pool hold? GSE.7.RP.3

3. Who makes the least money per hour? GSE.7.RP.1

<table>
<thead>
<tr>
<th>Person</th>
<th>Hours</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>20</td>
<td>$200.00</td>
</tr>
<tr>
<td>Bob</td>
<td>10</td>
<td>$105.00</td>
</tr>
<tr>
<td>Cal</td>
<td>16</td>
<td>$184.00</td>
</tr>
</tbody>
</table>

4. Who makes the most per hour?

5. Rare Shoes had a regular price of $95, but Jay found them on sale for 50% off. Including the 8% sales tax, what did Jay pay for the shoes? GSE.7.RP.3

6. Use the table to determine how many people ate if 426 grapes were used? GSE.7.RP.2b

<table>
<thead>
<tr>
<th>people</th>
<th>grapes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>?</td>
<td>426</td>
</tr>
</tbody>
</table>

7. A store pays $45 for a radio. The store marks the radio up 30%. What is the selling price for the radio? GSE.7.RP.3

8. Ted earns $7.50 an hour. How many hours must he work to earn $90? GSE.7.RP.1

9. Which of the following scenarios is represented by the graph?

A. For every cookie sold, the school earns $0.25.
B. For every cookie sold, the school earns $0.50.
C. For every cookie sold, the school earns $1.00.
D. For every cookie sold, the school earns $2.00.

GSE.7.RP.2d

10. Which equation represents the relationship between the number of miles traveled and how much it cost?

A. \(y = x \)
B. \(y = 2x \)
C. \(y = 3x \)
D. \(y = 4x \)

GSE.7.RP.2c

<table>
<thead>
<tr>
<th>miles (x)</th>
<th>cost (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$4</td>
</tr>
<tr>
<td>2</td>
<td>$8</td>
</tr>
<tr>
<td>3</td>
<td>$12</td>
</tr>
<tr>
<td>4</td>
<td>$16</td>
</tr>
</tbody>
</table>
11. Ari borrowed $2000 and paid it back over 3 years. The simple interest rate was 2% annually. How much interest did Ari pay over the three years?

\[\text{Interest} = \text{Principal} \times \text{Rate} \times \text{Time} \]

\[\text{Interest} = 2000 \times 0.02 \times 3 \]

\[\text{Interest} = 120 \]

GSE.7.RP.3

12. Bo bought a few items for $93.84, not including tax. If the tax rate was 7%, what was the total cost of these items, including tax?

\[\text{Total Cost} = \text{Cost of Items} + \text{Tax} \]

\[\text{Total Cost} = 93.84 + (93.84 \times 0.07) \]

\[\text{Total Cost} = 93.84 + 6.57 \]

\[\text{Total Cost} = 100.41 \]

GSE.7.RP.3

13. The graph represents the relationship between \(x \) (the number of owls fed) and \(y \) (the number of dollars spent). What is the amount of money that will be spent to feed 10 owls?

From the graph, we can see that when \(x = 10 \), \(y = 10 \). Therefore, the amount of money spent to feed 10 owls is $10.

GSE.7.RP.2

14. A model plane is at the scale of 1 inch = 4 feet. Which graph represents this?

A. \[\text{Graph A} \]
B. \[\text{Graph B} \]
C. \[\text{Graph C} \]
D. \[\text{Graph D} \]

The correct graph is **D**.

GSE.7.RP.2

15. It is 75\(\frac{3}{4}\) miles from my house to the Georgia Aquarium. On my map it measures 1\(\frac{1}{2}\) inches. What is the scale of the map?

\[\text{Scale} = \frac{\text{Map Measurement}}{\text{Actual Measurement}} \]

\[\text{Scale} = \frac{1.5}{75.75} \]

\[\text{Scale} = 0.02 \]

GSE.7.G.1

16. Tony’s bill at the restaurant was $9.52. If he wants to leave a 20% tip, how much is that?

\[\text{Tip} = \text{Bill} \times \text{Tip Rate} \]

\[\text{Tip} = 9.52 \times 0.20 \]

\[\text{Tip} = 1.90 \]

GSE.7.RP.3

Use the information in the box to answer questions 17 & 18.

Lunch for 4 people only $39.50

17. They want to leave a 20% tip. How much should they leave for the tip?

\[\text{Tip} = \text{Bill} \times \text{Tip Rate} \]

\[\text{Tip} = 39.50 \times 0.20 \]

\[\text{Tip} = 7.90 \]

GSE.7.RP.3

18. If the sales tax is 5%, how much tax do they owe?

\[\text{Tax} = \text{Bill} \times \text{Tax Rate} \]

\[\text{Tax} = 39.50 \times 0.05 \]

\[\text{Tax} = 1.98 \]

GSE.7.RP.3

19. The results of the first 100 students who voted are represented in the table. There are still 50 more students left to vote. Based on the early results, how many MORE votes do you expect Dan to get out of the 50 late voters?

<table>
<thead>
<tr>
<th>President</th>
<th># Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>25</td>
</tr>
<tr>
<td>Carol</td>
<td>65</td>
</tr>
<tr>
<td>Dan</td>
<td>10</td>
</tr>
</tbody>
</table>

To find the proportion of votes Dan received, we calculate:

\[\text{Proportion} = \frac{10}{100} = 0.1 \]

Then, we multiply this proportion by the 50 late voters:

\[\text{Expected Votes} = 0.1 \times 50 = 5 \]

Dan is expected to get 5 more votes than this proportion.

C.7.RP.3

7th Grade Unit 3 Common Assessment Study Guide Page 2
20. A $300 phone is on sale for 20% and you have a coupon for an extra 10% off. How much will you pay for the phone? (no tax)?

21. Pat borrowed $2,000 to help pay college expenses. The interest rate was 5% annually, and she will repay the loan in 4 years. How much total interest will she pay during the 4 years?

22. In the diagram above, figure \(JKL \) is similar to figure \(ZWX \). Which of the following proportions can be used to find the value of \(n \)?

 A. \(\frac{4}{n} = \frac{6}{12} \)
 B. \(\frac{n}{4} = \frac{12}{6} \)
 C. \(\frac{6}{n} = \frac{2}{4} \)
 D. \(\frac{6}{n} = \frac{12}{4} \)

23. The scale on a road map is 1 inch = 40 miles. What is the actual length of a road that measures \(2\frac{1}{4} \) inches on the map?

24. Billy Bob earns a 4% commission for each car he sells. He sells a car for $18,750. How much commission does he make for selling that car?